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Abstract

This article gives a brief history of the analysis and computation of the mathematical
constant � = 3:14159 : : :, including a number of the formulas that have been used to
compute � through the ages. Recent developments in this area are then discussed in
some detail, including the recent computation of � to over six billion decimal digits using
high-order convergent algorithms, and a newly discovered scheme that permits arbitrary
individual hexadecimal digits of � to be computed.
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Introduction

The fascinating history of the constant we now know as � spans several millennia,
almost from the beginning of recorded history up to the present day. In many ways this
history parallels the advancement of science and technology in general, and of mathematics
and computer technology in particular. An overview of this history is presented here in
sections one and two. Some exciting recent developments are discussed in sections three
and four. Section �ve explores the question of why this topic has such enduring interest.
For further details of the history of � up to about 1970, the reader is referred to Petr
Beckmann's readable and entertaining book [3]. A listing of milestones in the history of
the computation of � is given in Tables 1 and 2.

1. The Ancients

In one of the earliest accounts (about 2000 BC) of �, the Babylonians used the approx-
imation 31

8
= 3:125. At this same time or earlier, according to an account in an ancient

Egyptian document, Egyptians were assuming that a circle with diameter nine has the
same area as a square of side eight, which implies � = 256

81
= 3:1604 : : :. Others of antiquity

were content to use the simple approximation 3, as evidenced by the following passage
from the Old Testament:

Also, he made a molten sea of ten cubits from brim to brim, round in compass,
and �ve cubits the height thereof; and a line of thirty cubits did compass it
round about (I Kings 7:23; see also 2 Chron. 4:2).

The �rst rigorous mathematical calculation of the value of � was due to Archimedes
of Syracuse (ca. 250 BC), who used a geometrical scheme based on inscribed and circum-
scribed polygons to obtain the bounds 310

71
< � < 31

7
, or in other words 3:1408 : : : < � <

3:1428 : : : [11]. No one was able to improve on Archimedes' method for many centuries,
although a number of persons used this general method to obtain more accurate approxi-
mations. For example, the astronomer Ptolemy, who lived in Alexandria in 150 AD, used
the value 3 17

120
= 3:141666 : : :, and the �fth century Chinese mathematician Tsu Chung-

Chih used a variation of Archimedes' method to compute � correct to seven digits, a level
not obtained in Europe until the 1500s.

2. The Age of Newton

As in other �elds of science and mathematics, little progress was made in the quest for
� during the dark and middle ages, at least in Europe. The situation was somewhat better
in the East, where Al-Kashi of Samarkand computed � to 14 places about 1430. But in
the 1600s, with the discovery of calculus by Newton and Leibniz, a number of substantially
new formulas for � were discovered. One of them can be easily derived by recalling that

tan�1 x =
Z x

0

dt

1 + t2
=

Z x

0

(1� t2 + t4 � t6 + � � �) dt

= x� x3

3
+

x5

5
� x7

7
+

x9

9
� � � �
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Substituting x = 1 gives the well-known Gregory-Leibniz formula

�=4 = 1 � 1=3 + 1=5 � 1=7 + 1=9 � 1=11 + � � �
Regrettably, this series converges so slowly that hundreds of terms would be required to
compute the numerical value of � to even two digits accuracy. However, by employing the
trigonometric identity

�=4 = tan�1(1=2) + tan�1(1=3)

(which follows from the addition formula for the tangent function), one obtains

�=4 =
�
1

2
� 1

3 � 23 +
1

5 � 25 �
1

7 � 27 + � � �
�
+
�
1

3
� 1

3 � 33 +
1

5 � 35 �
1

7 � 37 + � � �
�

which converges much more rapidly. An even faster formula, due to Machin, can be
obtained by employing the identity

�=4 = 4 tan�1(1=5) � tan�1(1=239)

in a similar way. Shanks used this scheme to compute � to 707 decimal digits accuracy in
1873. Alas, it was later found that this computation was in error after the 527-th decimal
place.

Newton discovered a similar series for the arcsine function:

sin�1 x = x+
1 � x3
2 � 3 +

1 � 3 � x5
2 � 4 � 5 +

1 � 3 � 5 � x7
2 � 4 � 6 � 7 + � � �

� can be computed from this formula by noting that �=6 = sin�1(1=2). An even faster
formula of this type is

� =
3
p
3

4
+ 24

�
1

3 � 23 �
1

5 � 25 �
1

7 � 27 �
1

9 � 29 � � � �
�

Newton himself used this particular formula to compute �. He published 15 digits, but
later sheepishly admitted, \I am ashamed to tell you how many �gures I carried these
computations, having no other business at the time."

In the 1700s the mathematician Euler, arguably the most proli�c mathematician in
history, discovered a number of new formulas for �. Among these are

�2

6
= 1 +

1

22
+

1

32
+

1

42
+

1

52
+ � � �

�4

90
= 1 +

1

24
+

1

34
+

1

44
+

1

54
+ � � �

A related, more rapidly convergent series is

�2

6
= 3

1X
m=1

1

m2

�
2m
m

�
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These formulas aren't very e�cient for computing �, but they have important theoreti-
cal implications and have been the springboard for notable research questions, such as the
Riemann zeta function hypothesis, that continue to be investigated to this day.

One motivation for computations of � during this time was to see if the decimal expan-
sion of � repeats, thus disclosing that � is the ratio of two integers (although hardly anyone
in modern times seriously believed that it was rational). This question was conclusively
settled in the late 1700s, when Lambert and Legendre proved that � is irrational. Some
still wondered whether � might be the root of some algebraic equation with integer coe�-
cients (although as before few really believed that it was). This question was �nally settled
in 1882 when Lindemann proved that � is transcendental. Lindemann's proof also settled
once and for all, in the negative, the ancient Greek question of whether the circle could
be squared with ruler and compass. This is because constructible numbers are necessarily
algebraic.

In the annals of �, the nineteenth century came to a close on an utterly shameful note.
Three years prior to the turn of the century, one Edwin J. Goodman, M.D. introduced into
the Indiana House of Representatives a bill that would introduce \newMathematical truth"
and enrich the state, which would pro�t from the royalties ensuing from this discovery.
Section two of the bill included the passage

\disclosing the fourth important fact that the ratio of the diameter and cir-
cumference is as �ve-fourths to four;"

Thus one of Goodman's new mathematical \truths" is that � = 16

5
= 3:2. In spite of this

and numerous other absurd statements, the Indiana House passed the bill unanimously
on Feb. 5, 1897. The bill then passed a Senate committee, and would have been enacted
into law had it not been for the last-minute intervention of Prof. C. A. Waldo of Purdue
University, who happened to hear some of the deliberation while on other business.

3. The Twentieth Century

With the development of computer technology in the 1950s, � was computed to thou-
sands and then millions of digits, in both decimal and binary bases (see for example [17]).
These computations were facilitated by the discovery of some advanced algorithms for per-
forming the required high-precision arithmetic operations on a computer. For example, in
1965 it was found that the newly-discovered fast Fourier transform (FFT) could be used
to perform high-precision multiplications much more rapidly than conventional schemes.
These methods dramatically lowered the computer time required for computing � and
other mathematical constants to high precision. See [1], [7] and [8] for a discussion of some
of these techniques.

In spite of these advances, until the 1970s all computer evaluations of � still employed
classical formulas, usually a variation of Machin's formula. Some new in�nite series formu-
las were discovered by the Indian mathematician Ramanujan around 1910, but these were
not well known until quite recently when his writings were widely published. One of these
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is the remarkable formula

1

�
=

2
p
2

9801

1X
k=0

(4k)!(1103 + 26390k)

(k!)43964k

Each term of this series produces an additional eight correct digits in the result. Gosper
used this formula to compute 17 million digits of � in 1985.

While Ramanujan's series is considerably more e�cient than the classical formulas,
it shares with them the property that the number of terms one must compute increases
linearly with the number of digits desired in the result. In other words, if one wishes to
compute � to twice as many digits, then one must evaluate twice as many terms of the
series.

In 1976 Eugene Salamin [16] and Richard Brent [8] independently discovered a new
algorithm for �, which is based on the arithmetic-geometricmean and some ideas originally
due to Gauss in the 1800s (although for some reason Gauss never saw the connection to
computing �). This algorithm produces approximations that converge to � much more
rapidly than any classical formula. The Salamin-Brent algorithm may be stated as follows.
Set a0 = 1; b0 = 1=

p
2 and s0 = 1=2. For k = 1; 2; 3; � � � compute

ak =
ak�1 + bk�1

2

bk =
q
ak�1bk�1

ck = a2k � b2k
sk = sk�1 � 2kck

pk =
2a2k
sk

Then pk converges quadratically to �. This means that each iteration of this algorithm
approximately doubles the number of correct digits. To be speci�c, successive iterations
produce 1, 4, 9, 20, 42, 85, 173, 347 and 697 correct digits of �. Twenty-�ve iterations are
su�cient to compute � to over 45 million decimal digit accuracy. However, each of these
iterations must be performed using a level of numeric precision that is at least as high as
that desired for the �nal result.

The Salamin-Brent algorithm requires the extraction of square roots to high precision,
operations not required, for example, in Machin's formula. High-precision square roots
can be e�ciently computed by means of a Newton iteration scheme that employs only
multiplications, plus some other operations of minor cost, using a level of numeric precision
that doubles with each iteration. The total cost of computing a square root in this manner
is only about three times the cost of performing a single full-precision multiplication.
Thus algorithms such as the Salamin-Brent scheme can be implemented very rapidly on a
computer.

Beginning in 1985, two of the present authors (Jonathan and Peter Borwein) discovered
some additional algorithms of this type [5, 6, 7]. One is as follows. Set a0 = 1=3 and

5



s0 = (
p
3� 1)=2. Iterate

rk+1 =
3

1 + 2(1 � s3k)
1=3

sk+1 =
rk+1 � 1

2
ak+1 = r2k+1ak � 3k(r2k+1 � 1)

Then 1=ak converges cubically to � | each iteration approximately triples the number of
correct digits. A quartic algorithm is as follows: Set a0 = 6�4

p
2 and y0 =

p
2�1. Iterate

yk+1 =
1� (1 � y4k)

1=4

1 + (1� y4k)
1=4

ak+1 = ak(1 + yk+1)
4 � 22k+3yk+1(1 + yk+1 + y2k+1)

Then ak converges quartically to 1=�. This particular algorithm, together with the Salamin-
Brent scheme, has been employed by Yasumasa Kanada of the University of Tokyo in
several computations of � over the past ten years or so. In the latest of these computations,
Kanada computed over 6.4 billion decimal digits on a Hitachi supercomputer. This is
presently the world's record in this arena.

More recently it has been further shown that there are algorithms that generate m-th
order convergent approximations to � for any m. An example of a nonic (ninth-order)
algorithm is the following: Set a0 = 1=3; r0 = (

p
3� 1)=2; s0 = (1 � r30)

1=3. Iterate

t = 1 + 2rk

u = [9rk(1 + rk + r2k)]
1=3

v = t2 + tu+ u2

m =
27(1 + sk + s2k)

v
ak+1 = mak + 32k�1(1�m)

sk+1 =
(1 � rk)3

(t+ 2u)v

rk+1 = (1� s3k)
1=3

Then 1=ak converges nonically to �. It should be noted however that these higher order
algorithms do not appear to be faster as computational schemes than, say the Salamin-
Brent or the Borwein quartic algorithms. In other words, although fewer iterations are
required to achieve a given level of precision in the higher-order schemes, each iteration is
more expensive.

A comparison of actual computer run times for various � algorithms is shown in Figure
1. These run times are for computing � in binary to various precision levels on an IBM
RS6000/590 workstation. The abscissa of this plot is in hexadecimal digits | multiply
these numbers by four to obtain equivalent binary digits, or by log10(16) = 1:20412 : : :
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Figure 1: Run times for Computing Pi

to obtain equivalent decimal digits. Other implementations on other systems may give
somewhat di�erent results | for example, in Kanada's recent computation of � to over six
billion digits, the quartic algorithm ran somewhat faster than the Salamin-Brent algorithm
(116 hours versus 131 hours). But the overall picture from such comparisons is unmistak-
able: the modern schemes run many times faster than the classical schemes, especially
when implemented using FFT-based arithmetic.

David and Gregory Chudnovsky of Columbia University have also done some very-
high precision computations of � in recent years, alternating with Kanada for the world's
record. Their most recent computation (1994) produced over four billion digits of � [9].
They did not employ a high-order convergent algorithm, such as the Salamin-Brent or
Borwein algorithms, but instead utilized the following in�nite series (which is in the spirit
of Ramanujan's series above):

1

�
= 12

1X
k=0

(�1)k (6k)!(13591409 + 545140134k)

(3k)! (k!)3 6403203k+3=2

Each term of this series produces an additional 14 correct digits. The Chudnovskys imple-
mented this formula with a very clever scheme that enabled them to utilize the results of a
certain level of precision to extend the calculation to even higher precision. Their program
was run on a home-brew supercomputer that they have assembled using private funds. An
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interesting personal glimpse of the Chudnovsky brothers is given in [14].

4. Computing Individual Digits of �
At several junctures in the history of �, it was widely believed that virtually everything

of interest with regards to this constant had been discovered, and in particular that no
fundamentally new formulas for � lay undiscovered. This sentiment was even suggested in
the closing chapters of Beckmann's 1971 book on the history of � [3, pg. 172]. Ironically,
the Salamin-Brent algorithm was discovered only �ve years later.

A more recent reminder that we have not come to the end of humanity's quest for
knowledge about � came with the discovery of the Rabinowitz-Wagon \spigot" algorithm
for � in 1990 [15]. In this scheme, successive digits of � (in any desired base) can be
computed with a relatively simple recursive algorithm based on the previously generated
digits. Multiple precision computation software is not required, so that this scheme can be
easily implemented on a personal computer.

Note however that this algorithm, like all of the other schemesmentioned above, still has
the property that in order to compute the d-th digit of �, one must �rst (or simultaneously)
compute each of the preceding digits. In other words, there is no \shortcut" to computing
the d-th digit with these formulas. Indeed, it has been widely assumed in the �eld (although
never rigorously proven) that the computational complexity of computing the d-th digit is
not signi�cantly less than that of computing all of the digits up to and including the d-th
digit. This may still be true, although it is probably very hard to prove. Another common
feature of the previously known � algorithms is that they all appear to require substantial
amounts of computer memory, amounts that typically grow linearly with the number of
digits generated.

Thus it was with no small surprise that a novel scheme was recently discovered for
computing individual hexadecimal digits of � [2]. In particular, this algorithm (1) pro-
duces the d-th hexadecimal (base 16) digit of � directly, without the need of computing
any previous digits; (2) is quite simple to implement on a computer; (3) does not require
multiple precision arithmetic software; (4) requires very little memory; and (5) has a com-
putational cost that grows only slightly faster than the index d. For example, the one
millionth hexadecimal digit � can be computed in only a minute or two on a current RISC
workstation or high-end personal computer. This algorithm is not fundamentally faster
than other known schemes for computing all digits up to some position d, but its elegance
and simplicity are nonetheless of considerable interest.

This scheme is based on the following remarkable new formula for �:

� =
1X
i=0

1

16i

�
4

8i+ 1
� 2

8i+ 4
� 1

8i+ 5
� 1

8i+ 6

�

The proof of this formula is not very di�cult. First note that for any k < 8,

Z
1=
p
2

0

xk�1

1 � x8
dx =

Z 1=
p
2

0

1X
i=0

xk�1+8i dx =
1

2k=2

1X
i=0

1

16i(8i+ k)
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Babylonians 2000? BCE 1 3.125 (31
8
)

Egyptians 2000? BCE 1 3.16045 (4(8
9
)2)

China 1200? BCE 1 3
Bible (1 Kings 7:23) 550? BCE 1 3
Archimedes 250? BCE 3 3.1418 (ave.)

Hon Han Shu 130 AD 1 3.1622 (=
p
10 ?)

Ptolemy 150 3 3.14166

Chung Hing 250? 1 3.16227 (
p
10)

Wang Fau 250? 1 3.15555 (142
45
)

Liu Hui 263 5 3.14159
Siddhanta 380 3 3.1416
Tsu Ch'ung Chi 480? 7 3.1415926
Aryabhata 499 4 3.14156

Brahmagupta 640? 1 3.162277 (=
p
10)

Al-Khowarizmi 800 4 3.1416
Fibonacci 1220 3 3.141818
Al-Kashi 1429 14
Otho 1573 6 3.1415929
Viete 1593 9 3.1415926536 (ave.)
Romanus 1593 15
Van Ceulen 1596 20
Van Ceulen 1615 35
Newton 1665 16
Sharp 1699 71
Seki 1700? 10
Kamata 1730? 25
Machin 1706 100
De Lagny 1719 127 (112 correct)
Takebe 1723 41
Matsunaga 1739 50
Vega 1794 140
Rutherford 1824 208 (152 correct)
Strassnitzky and Dase 1844 200
Clausen 1847 248
Lehmann 1853 261
Rutherford 1853 440
Shanks 1874 707 (527 correct)

Table 1: History of � Calculations (Pre 20th Century)
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Ferguson 1946 620
Ferguson Jan. 1947 710
Ferguson and Wrench Sep. 1947 808
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Nicholson and Jeenel 1954 3,092
Felton 1957 7,480
Genuys Jan. 1958 10,000
Felton May 1958 10,021
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Filliatre 1966 250,000
Guilloud and Dichampt 1967 500,000
Guilloud and Bouyer 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036
Guilloud 1982 2,000,050
Tamura 1982 2,097,144
Tamura and Kanada 1982 4,194,288
Tamura and Kanada 1982 8,388,576
Kanada, Yoshino and Tamura 1982 16,777,206
Ushiro and Kanada Oct. 1983 10,013,395
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada, Tamura, Kubo, et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Chudnovskys Jun. 1989 525,229,270
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1989 1,011,196,691
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Takahashi and Kanada Jun. 1995 3,221,225,466
Kanada Aug. 1995 4,294,967,286
Kanada Oct. 1995 6,442,450,938

Table 2: History of � Calculations (20th Century)
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Thus we can write
1X
i=0

1

16i

�
4

8i+ 1
� 2

8i+ 4
� 1

8i+ 5
� 1

8i+ 6

�

=
Z 1=

p
2

0

4
p
2 � 8x3 � 4

p
2x4 � 8x5

1 � x8
dx

which on substituting y :=
p
2x becomesZ 1

0

16 y � 16

y4 � 2 y3 + 4 y � 4
dy =

Z 1

0

4y

y2 � 2
dy �

Z 1

0

4y � 8

y2 � 2y + 2
dy = �

reecting a partial fraction decomposition of the integral on the left-hand side.
However, this derivation is dishonest, in the sense that the actual route of discovery was

much di�erent. This formula was actually discovered not by formal reasoning, but instead
by numerical searches on a computer using the \PSLQ" integer relation �nding algorithm
[10]. Only afterwards was a rigorous proof found.

A similar formula for �2 (which also was �rst discovered using the PSLQ algorithm) is
as follows:

�2 =
1X
i=0

1

16i

"
16

(8i+ 1)2
� 16

(8i+ 2)2
� 8

(8i+ 3)2
� 16

(8i+ 4)2

� 4

(8i+ 5)2
� 4

(8i+ 6)2
+

2

(8i+ 7)2

#

Formulas of this type for a few other mathematical constants are given in [2].
Computing individual hexadecimal digits of � using the above formula crucially relies

on what is known as the binary algorithm for exponentiation, wherein one evaluates xn

by successive squaring and multiplication. This reduces the number of multiplications
required to less than 2 log2(n). According to Knuth, this technique dates back at least to
200 B.C [13]. In our application, we need to obtain the exponentiation result modulo a
positive integer c. This can be e�ciently done with the following variant of the binary
exponentiation algorithm, wherein the result of each multiplication is reduced modulo c:

To compute r = bn mod c, �rst set t to be the largest power of two � n, and set r = 1.
Then

A: if n � t then r  br mod c; n n� t; endif
t t=2
if t � 1 then r r2 mod c; go to A; endif

Here \mod" is used in the binary operator sense, namely as the binary function de�ned by
x mod y := x� [x=y]y. Note that the above algorithm is entirely performed with positive
integers that do not exceed c2 in size.

Consider now the �rst of the four sums in the formula above for �:

S1 =
1X
k=0

1

16k(8k + 1)
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First observe that the hexadecimal digits of S1 beginning at position d+1 can be obtained
from the fractional part of 16dS1. Then we can write

frac(16dS1) =
1X
k=0

16d�k

8k + 1
mod 1

=
dX

k=0

16d�k mod 8k + 1

8k + 1
mod 1 +

1X
k=d+1

16d�k

8k + 1
mod 1

For each term of the �rst summation, the binary exponentiation scheme can be used to
rapidly evaluate the numerator. In a computer implementation this can be done using ei-
ther integer or 64-bit oating-point arithmetic. Then oating-point arithmetic can be used
to perform the division and add the quotient to the sum mod 1. The second summation,
where the exponent of 16 is negative, may be evaluated as written using oating-point
arithmetic. It is only necessary to compute a few terms of this second summation, just
enough to insure that the remaining terms sum to less than the \epsilon" of the oating-
point arithmetic being used. The �nal result, a fraction between 0 and 1, is then converted
to base 16, yielding the (d + 1)-th hexadecimal digit, plus several additional digits. Full
details of this scheme, including some numerical considerations, as well as analogous for-
mulas for a number of other basic mathematical constants, can be found in [2]. Sample
implementations of this scheme in both Fortran and C are available from the web site
http://www.cecm.sfu.ca/personal/pborwein/.

As the reader can see, there is nothing very sophisticated about either this new formula
for �, its proof, or the scheme just described to compute hexadecimal digits of � using it.
In fact, this same scheme can be used to compute binary (or hexadecimal) digits of log(2)
based on the formula

log(2) =
1X
k=1

1

k2k
;

which has been known for centuries. Thus it is frankly astonishing that these methods
have lain undiscovered all this time. There seems to be no fundamental reason that Euler,
for example, could not have discovered them. The only advantage that today's researchers
have in this regard is advanced computer technology. Along this line, Table 3 gives some
hexadecimal digits of � computed using the above scheme.

One question that immediately arises in the wake of this discovery is whether or not
there is a formula of this type and an associated computational scheme to compute indi-
vidual decimal digits of �. Alas, no decimal scheme for � is known at this time, although
there is for certain constants such as log(9=10) | see [2]. On the other hand, there is
not yet any proof that a decimal scheme for � cannot exist. This question is currently
being actively pursued by researchers. Based on some numerical searches using the PSLQ
algorithm, it appears that there are no simple formulas of the above form for � with 10
in the place of 16. This of course does not rule out the possibility of completely di�erent
formulas that nonetheless permit rapid computation of individual decimal digits of �.

12



Hex Digits Beginning
Position At This Position
106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

Table 3: Hexadecimal Digits of �

5. Why?

Certainly there is no need for computing � to millions or billions of digits in practical
scienti�c or engineering work. A value of � to 40 digits would be more than enough
to compute the circumference of the Milky Way galaxy to an error less than the size of
a proton. There are certain scienti�c calculations that require intermediate calculations
to be performed to signi�cantly higher precision than required for the �nal results, but
it is doubtful than anyone will ever need more than a few hundred digits of � for such
purposes. Values of � to a few thousand digits are sometimes employed in explorations of
mathematical questions using a computer, but we not aware of any signi�cant number of
applications beyond this level.

One motivation for computing digits of � is that these calculations are excellent tests
of the integrity of computer hardware and software. This is because if even a single error
occurs during a computation, almost certainly the �nal result will be in error. On the
other hand, if two independent computations of digits of � agree, then most likely both
computers performed billions or even trillions of operations awlessly. For example, in
1986, a �-calculating program detected some obscure hardware problems in one of the
original Cray-2 supercomputers [1].

The challenge of computing � has also stimulated research into advanced computational
techniques. For example, some new techniques for e�ciently computing linear convolutions
and fast Fourier transforms (FFTs), which have applications in many areas of science and
engineering, had their origins in e�orts to accelerate computations of �.

Beyond immediate practicality, decimal and binary expansions of � have long been
of interest to mathematicians, who have still not been able to resolve the question of
whether the expansion of � is normal [18]. In particular, it is widely suspected that the
decimal expansions of �; e;

p
2;
p
10, and many other mathematical constants all have the

property that the limiting frequency of any digit is one tenth, and the limiting frequency
of any n-long string of decimal digits is 10�n (and similarly for binary expansions). Such a
guaranteed property could, for instance, be the basis of a reliable pseudo-random number
generator for scienti�c calculations. Unfortunately, this assertion has not been proven in
even one instance. Thus there is a continuing interest in performing statistical analyses on
the expansions of these numbers to see if there is any irregularity that would suggest this
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assertion is false. So far, such studies of high-precision values of � have not disclosed any
irregularities. Along this line, new formulas and schemes for computing digits of �, such
as the one described in section four, are of interest because some of these may suggest new
approaches to answering the normality question.

Finally, there is a more fundamental motivation for computing �, which should be
familiar to anyone who has scaled a lofty mountain or competed in a major sporting event:
\it is there" | it is easily the most famous of the basic constants of mathematics. Thus
as long as there are humans (and computers) we will doubtless have ever-more impressive
computations of �.

Conclusion

The constant � has repeatedly surprised humanity with new and often unanticipated
results. If anything, the discoveries of this century have been even more startling, with
respect to the previous state of knowledge, than those of past centuries. Thus we conclude
that evenmore surprises lurk in the depths of undiscovered knowledge regarding this famous
constant. We thus look forward to what the future has to bring.

Acknowledgment

The authors wish to acknowledge helpful information from Yasumasa Kanada of the
University of Tokyo.

14



References

[1] D. H. Bailey, \The Computation of Pi to 29,360,000 Decimal Digits Using Borweins'
Quartically Convergent Algorithm",Mathematics of Computation, Jan. 1988, pg. 283{
296.

[2] D. H. Bailey, P. B. Borwein and S. Plou�e, \On The Rapid Computa-
tion of Various Polylogarithmic Constants", manuscript, 1996. Available from
http://www.cecm.sfu/personal/pborwein/.

[3] P. Beckmann, A History of Pi, St. Martin's Press, New York, 1971.

[4] L. Berggren, J. M. Borwein, and P. B. Borwein, A Sourcebook on Pi, Springer, to
appear.

[5] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number

Theory and Computational Complexity, John Wiley, New York, 1987.

[6] J. M. Borwein and P. B. Borwein, \Ramanujan and Pi", Scienti�c American, February
1987, pg. 112{117.

[7] J. M. Borwein, P. B. Borwein and D. H. Bailey, \Ramanujan, Modular Equations,
and Approximations to Pi, or How to Compute One Billion Digits of Pi", Ameri-

can Mathematical Monthly, March 1989, pg. 201{219. Also available from the URL
http://www.cecm.sfu.ca/personal/pborwein/.

[8] R. P. Brent, \Fast Multiple-Precision Evaluation of Elementary Functions", Journal of
the ACM, vol. 23 (1976), pg. 242{251.

[9] D. and C. Chudnovsky, personal communication, 1995.

[10] H. R. P. Ferguson and D. H. Bailey, \Analysis of PSLQ, An Integer Relation Algo-
rithm", manuscript, 1996. Available from author.

[11] T. L. Heath, trans, \The Works of Archimedes", in Robert M. Hutchins, ed., Great
Books of the Western World, vol. 11, Encyclopedia Britannica, 1952, pg. 447{451.

[12] Y. Kanada, personal communication, 1996. See also Kanada's book (in Japanese),
Story of Pi, Tokyo-Toshyo Co. Ltd., Tokyo, Japan, 1991.

[13] D. E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading,
MA, 1981.

[14] R. Preston, \The Mountains of Pi", The New Yorker, March 2, 1992, pg. 36{67.

[15] S. D. Rabinowitz and S. Wagon, \A Spigot Algorithm for Pi", American Math.

Monthly, vol. 103 (1995), pg. 195{203.

15



[16] E. Salamin, \Computation of Pi Using Arithmetic-Geometric Mean", Mathematics of

Computation, vol. 30 (1976), pg. 565{570.

[17] D. Shanks and J. W. Wrench, \Calculation of Pi to 100,000 Decimals", Mathematics

of Computation, vol. 16 (1962), pg. 76{79.

[18] S. Wagon, \Is Pi Normal", The Math Intelligencer, vol. 7 (1985), pg. 65{67.

16


